

Seals and shipping noise in a dynamic sea: seasonal changes in shipping noise exposure experienced by diving seals

Chen F., Shapiro G., Bennett K.A., Ingram S.N., Thompson D., Vincent C., Russell D., Embling C.B.

feng.chen@plymouth.ac.uk

clare.embling@plymouth.ac.uk

Introduction

Shipping noise

- > Increasing continuously
- > A major contributor to ocean noise
- ➤ Low frequency (10-1000Hz)
- > Detrimental effects on animals

Legislation of shipping noise

- European Marine Strategy Framework Directive (MSFD)
- > International Marine Organisation (IMO)
- International Whaling Commission (IWC)

Aims and objectives

- To examine how oceanic processes affect noise propagation
 - > Summer and winter (stratified *vs* non-stratified)
 - > Location of ship (onshore and offshore side of front)

- To predict potential noise exposure by diving seals in 3D
 - Moving source (ship)
 - Moving receiver (seal)

Modelling system

Species

Grey Seal

- ~45% in UK
- Able to hear noise
- Benthic forager
- Diving data
 - ➤ GPS tags
 - > SW Wales

Sound frequency relationship between animal and ship (B. Southall, NMFS/NOAA)

Shipping density in UK

Map of shipping density around UK waters plotted by using ShipAIS (Shipping Automatic Identification System) data (BMT, 2013)

Study area

Temperature and Transmission Loss of transect A

Locations of the ship

Temperature and Transmission Loss of transect B

Cumulative Sound Exposure Level (SEL)

SEL at a water depth of 50m

Diving profiles of a pup seal in 3D

Received level by a pup seal along diving path

Received level by a pup seal along diving path

Discussion and Conclusion

- Oceanic processes (e.g. stratification and fronts) have strong effects on noise propagation
- High interactions with shipping noise
 - Benthic foragers
 - ➤ Able to travel large distance
- Step changes in the sound level are frequent while foraging, which may have negative effects on grey seals
- How do grey seals respond to such step change of sound?
 - Path changes
 - Changes in diving
 - Relate changes to sound level

Thank you for your attention!

Input TS

Water column data: section 189

1. Observational data

Scanfish temperature data collected in the Celtic Sea in Aug 1998 (Brown et al., 2003)

2. Modelled data

Fully 3D predicted temperature data

Mean error: -0.17°C RMSe: 0.83 Willmott skill (0 - 1): 0.97

Input TS

Water column data: section 202

1. Observational data

Scanfish temperature data collected in the Celtic Sea in Sep 1998 (Brown et al., 2003)

2. Modelled data

Fully 3D predicted temperature data

Mean error: -0.35°C RMSe: 0.53 Willmott skill (0 - 1): 0.98