UK Marine Environmental Mapping Programme (MAREMAP)

Fine-scale insight into basking shark, porpoise & foraging seabird distribution around a rocky reef

Dr Sophia Butler-Cowdry (formerly NOC)

PhD support:

Dr Russell Wynn (NOCS)
Dr Justin Dix (NERC)
Dr Simon Ingram & Dr Clare Embling (University of Plymouth)

Aims

Identify & quantify controls on short-term distribution (and concentrations) of porpoises & foraging seabird aggregations

Rationale

 Current policy drivers (e.g. MPA designation & management) require low-cost survey methods to collect robust & appropriately-resolved data

Human impacts increasing (e.g. wet renewables)

 When & where species visit nearshore waters during important stages of their lifecycle (e.g. breeding, feeding, migration)

Runnel Stone Reef MCZ (Jan '16)

Difficult survey environment

- Tidally-swept
- High energy
- Bedrockdominated
- Prevailing
 Atlantic winds
- SW swell

Reef edge clearly demarcated by colours of different water masses due to depth change.

Shear zone at outer reef edge

Separates water flows of different velocities:

- Shallow, fast-moving
- Deeper, slower moving

Data Collection

Theodolite

Records angles relative to known GPS points – accurate positions of object at sea surface.

5x more accurate & unobtrusive than conventional visual monitoring.

Useful where other monitoring methods not practical (e.g. boat-based surveys).

Observation team

Conditions: Visibility >5 km, sea state ≤3 Years <u>2011-2013</u> **404 hours over 55 days**

Observations filtered by number of different sighting IDs each 30-minutes per 600-m grid cell out to 3 km.

= Measure of **relative** habitat use.

'Tidal-topographic' features

Physical processes interact w/ complex topography

Countercurrents & eddies form surface 'boils' downstream of topographic features

Key Results

Seabird feeding aggs (n = 110)

Line fishing vessels (n = 492)

- Overlapping spatial preferences (significant r = 0.83, p < 0.001)
- Clustering around topographic highs at reef margin
- Few obs in water deeper than 30 m
- Notable absence in western quadrant
- (Minimal interaction/impact)

Core habitat: feeding seabirds vs porpoises

Sightings filtered by tide

Seabird feeding aggregations

Harbour porpoises

- Eastward: Seabird feeding events dispersed along eastern reef margin
- Westward: restricted to shallower (<20 m) areas of plateau
- Westward: more strongly associated w/ topographic highs
- Slack: clustered in concentrated area south of S. pinnacles

Sightings filtered by tide

Seabird feeding aggregations

Harbour porpoises

- Porpoises core habitat areas overlap
- Three kernels share concentrated area adjacent to S. reef margin
- Notable absence in western quadrant
- Westward: sightings more dispersed (different to seabirds)

Environmental controls on distribution

(Results from modelling)

Tidal range = proxy for time in the spring-neap cycle

Species	SEABIRDS	PORPOISES
SPATIAL COVARIATES		
Mean depth	2	1
Mean slope	1	2
Mean aspect	3	
(Interaction?)	(Slp:Dep) 4	(Slp:Asp) 3
TEMPORAL COVARIATES		
SURVEY VARIABLES		
Significant wave height		3
Sea state		
Cloud cover	2	2
Wind speed	1	1
Wind direction		4
TIDAL VARIABLES		
Tide direction		6
Tide speed		
Tide height		
Tidal range	3	5
Tidal hour		
Tidal flow group		
TEMPORAL VARIABLES		
Month		
Hour	4	

Basking sharks (n = 36)

Aligned adjacent to

visible tidal boundaries at interface of faster and slower water masses *off* reef edge

 Aligned w/ shear zones in shallower areas of reef plateau

 11 sharks tracked for >10 mins

Single basking shark track

- High resolution in time (<30 secs) and space (20-m)
- Moving back and forth over a 40-m distance
- Tracked over 18 minutes

Shore-based X-band marine radar

- To supplement ADCP
- Digitally recorded images of sea surface
- Analysis of wave properties based on linear wave theory
- Interpreted to map shallow water areas (up to 4 km)

Linear 'shadows' to east of topographic highs indicate eastward flows during this recording

Radar-derived current flows

- Hourly measurements
- Complete tidal cycle during a spring and neap
- Speed and vector
- 160-m resolution

Future analysis

- Flow information
 attributed to each
 'segment' of a shark track
- Movement information
 will be analysed in
 relation to extremely high
 resolution flow
 information (TEMPORAL),
 as well as static
 bathymetric covariates
 (SPATIAL).

Conclusions

Application for conservation & marine management regimes

- Range of fine-scale survey methods
- Each species exhibits niche distribution patterns and/or preferential habitat use
- 'Hotspot' areas suggestive of localised zones of enhanced prey availability

(Photo: S Butler-Cowdry)

UK Marine Environmental Mapping Programme (MAREMAP)

Acknowledgements

- MAREMAP partners
- NOC
- NERC

Further info, see my e-thesis

Contact: sophia@greencreds.com